博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【算法•日更•第三十九期】迭代加深搜索:洛谷SP7579 YOKOF - Power Calculus 题解...
阅读量:5288 次
发布时间:2019-06-14

本文共 3350 字,大约阅读时间需要 11 分钟。

  废话不多说,直接上题:


SP7579 YOKOF - Power Calculus

题意翻译

(略过没有营养的题干)

题目大意: 给出正整数n,若只能使用乘法或除法,输出使x经过运算(自己乘或除自己,以及乘或除运算过程中产生的中间结果)变成x^n的最少步数

输入格式: 若干行数据,每行一个正整数n,数据以单独成行的0结束

输出格式: 若干行数据,对应每行输入的n所需的步数

题目描述

Starting with x and repeatedly multiplying by x, we can compute x ^{31}31 with thirty multiplications:

x ^{2}2 = x * xx ^{3}3 = x ^{2}2 * xx ^{4}4 = x ^{3}3 * x, ... , x ^{31}31 = x ^{30}30 * x.

The operation of squaring can appreciably shorten the sequence of multiplications. The following is a way to compute x ^{31}31 with eight multiplications:

x ^{2}2 = x * xx ^{3}3 = x ^{2}2 * xx ^{6}6 = x ^{3}3 * x ^{3}3 , x ^{7}7 = x ^{6}6 * xx ^{14}14 = x ^{7}7 * x ^{7}7 ,

x ^{15}15 = x ^{14}14 * xx ^{30}30 = x ^{15}15 * x ^{15}15 , x ^{31}31 = x ^{30}30 * x.

This is not the shortest sequence of multiplications to compute x ^{31}31 . There are many ways with only seven multiplications. The following is one of them:

x ^{2}2 = x * xx ^{4}4 = x ^{2}2 * x ^{2}2 , x ^{8}8 = x ^{4}4 * x ^{4}4 , x ^{10}10 = x ^{8}8 * x ^{2}2 ,

x ^{20}20 = x ^{10}10 * x ^{10}10 , x ^{30}30 = x ^{20}20 * x ^{10}10 , x ^{31}31 = x ^{30}30 * x.

There however is no way to compute x ^{31}31 with fewer multiplications. Thus this is one of the most efficient ways to compute x ^{31}31 only by multiplications.

If division is also available, we can find a shorter sequence of operations. It is possible to compute x ^{31}31 with six operations (five multiplications and one division):

x ^{2}2 = x * xx ^{4}4 = x ^{2}2 * x ^{2}2 , x ^{8}8 = x ^{4}4 * x ^{4}4 , x ^{16}16 = x ^{8}8 * x ^{8}8 , x ^{32}32 = x ^{16}16 * x ^{16}16 , x ^{31}31 = x ^{32}32÷ x.

This is one of the most efficient ways to compute x ^{31}31 if a division is as fast as a multiplication.

Your mission is to write a program to find the least number of operations to compute x ^{n}n by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence of operations should be x to a positive integer's power. In other words, x ^{-3}3 , for example, should never appear.

输入格式

The input is a sequence of one or more lines each containing a single integer nn is positive and less than or equal to 1000. The end of the input is indicated by a zero.

输出格式

Your program should print the least total number of multiplications and divisions required to compute x ^{n}n starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.

输入输出样例

输入 #1复制
13170914735128119530
输出 #1复制
 06891191312

  这道题有点尴尬,大多都是英语,幸好浏览器是可以翻译的。

  

  先来确定算法。

  这道题先来思考用什么算法?似乎没什么特殊的算法,那么就只能搜索了。

  是深搜呢?还是广搜呢?广搜没前途,状态不好记录,深搜又控制不住,一条路走到黑。

  其实这道题直接迭代加深搜索就可以了。

  什么是迭代加深搜索?就是深搜设定上一个搜索的边界,逐步加深这个边界,这样每次会限制其搜索的深度,就不会一条路走到黑了。  

  但是这是依旧相当的暴力啊!!!

  小编试了一下,连样例数据都卡到爆了,所以必须进一步优化,这里使用剪枝优化。

  如果当前的指数自乘剩下的次数之后仍然比n小,那么我们就一定会果断舍弃,这就是剪枝的内容。

  代码如下:

1 #include
2 using namespace std; 3 int num[10000],n,idt;//用num来存储已经创造过的可以用于计算的数,idt是限制的深度 4 bool dfs(int step,int now)//step是当前用了多少次运算,now是当前指数 5 { 6 if(now<=0||step>idt||now<<(idt-step)
>n;22 if(n==0) break;23 for(idt=0;;idt++)//从0开始枚举深度24 if(dfs(0,1)==true) break;//发现可以就结束循环25 cout<
<

转载于:https://www.cnblogs.com/TFLS-gzr/p/11335906.html

你可能感兴趣的文章
raid 0 1 5 10 总结的知识点
查看>>
3D屏保:排色榜
查看>>
找出最长的有效括号内子括号的长度
查看>>
c语言条件表达式误区1
查看>>
linux中vfork对打开文件的处理
查看>>
数据类型
查看>>
【选择器】
查看>>
爬虫-数据解析
查看>>
201621123080《Java程序设计》第9周学习总结
查看>>
ThinkPHP实现定时任务
查看>>
MongoDB修改器和pymongo
查看>>
Selenium 学习总结
查看>>
[Python]猜数字游戏AI版的实现(幼儿园智商AI)
查看>>
HDOJ 1047 Integer Inquiry (大数)
查看>>
面试总结
查看>>
什么是ORM?
查看>>
msf命令全集
查看>>
PHP后台代码 及 iOS客户端--AF实现上传视频
查看>>
数据结构实验之栈与队列一:进制转换(SDUT 2131)
查看>>
USM-V1.0
查看>>