废话不多说,直接上题:
SP7579 YOKOF - Power Calculus
题意翻译
(略过没有营养的题干)
题目大意: 给出正整数n,若只能使用乘法或除法,输出使x经过运算(自己乘或除自己,以及乘或除运算过程中产生的中间结果)变成x^n的最少步数
输入格式: 若干行数据,每行一个正整数n,数据以单独成行的0结束
输出格式: 若干行数据,对应每行输入的n所需的步数
题目描述
Starting with x and repeatedly multiplying by x, we can compute x ^{31}31 with thirty multiplications:
x ^{2}2 = x * x, x ^{3}3 = x ^{2}2 * x, x ^{4}4 = x ^{3}3 * x, ... , x ^{31}31 = x ^{30}30 * x.
The operation of squaring can appreciably shorten the sequence of multiplications. The following is a way to compute x ^{31}31 with eight multiplications:
x ^{2}2 = x * x, x ^{3}3 = x ^{2}2 * x, x ^{6}6 = x ^{3}3 * x ^{3}3 , x ^{7}7 = x ^{6}6 * x, x ^{14}14 = x ^{7}7 * x ^{7}7 ,
x ^{15}15 = x ^{14}14 * x, x ^{30}30 = x ^{15}15 * x ^{15}15 , x ^{31}31 = x ^{30}30 * x.
This is not the shortest sequence of multiplications to compute x ^{31}31 . There are many ways with only seven multiplications. The following is one of them:
x ^{2}2 = x * x, x ^{4}4 = x ^{2}2 * x ^{2}2 , x ^{8}8 = x ^{4}4 * x ^{4}4 , x ^{10}10 = x ^{8}8 * x ^{2}2 ,
x ^{20}20 = x ^{10}10 * x ^{10}10 , x ^{30}30 = x ^{20}20 * x ^{10}10 , x ^{31}31 = x ^{30}30 * x.
There however is no way to compute x ^{31}31 with fewer multiplications. Thus this is one of the most efficient ways to compute x ^{31}31 only by multiplications.
If division is also available, we can find a shorter sequence of operations. It is possible to compute x ^{31}31 with six operations (five multiplications and one division):
x ^{2}2 = x * x, x ^{4}4 = x ^{2}2 * x ^{2}2 , x ^{8}8 = x ^{4}4 * x ^{4}4 , x ^{16}16 = x ^{8}8 * x ^{8}8 , x ^{32}32 = x ^{16}16 * x ^{16}16 , x ^{31}31 = x ^{32}32÷ x.
This is one of the most efficient ways to compute x ^{31}31 if a division is as fast as a multiplication.
Your mission is to write a program to find the least number of operations to compute x ^{n}n by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence of operations should be x to a positive integer's power. In other words, x ^{-3}−3 , for example, should never appear.
输入格式
The input is a sequence of one or more lines each containing a single integer n. n is positive and less than or equal to 1000. The end of the input is indicated by a zero.
输出格式
Your program should print the least total number of multiplications and divisions required to compute x ^{n}n starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.
输入输出样例
13170914735128119530
06891191312
这道题有点尴尬,大多都是英语,幸好浏览器是可以翻译的。
先来确定算法。
这道题先来思考用什么算法?似乎没什么特殊的算法,那么就只能搜索了。
是深搜呢?还是广搜呢?广搜没前途,状态不好记录,深搜又控制不住,一条路走到黑。
其实这道题直接迭代加深搜索就可以了。
什么是迭代加深搜索?就是深搜设定上一个搜索的边界,逐步加深这个边界,这样每次会限制其搜索的深度,就不会一条路走到黑了。
但是这是依旧相当的暴力啊!!!
小编试了一下,连样例数据都卡到爆了,所以必须进一步优化,这里使用剪枝优化。
如果当前的指数自乘剩下的次数之后仍然比n小,那么我们就一定会果断舍弃,这就是剪枝的内容。
代码如下:
1 #include2 using namespace std; 3 int num[10000],n,idt;//用num来存储已经创造过的可以用于计算的数,idt是限制的深度 4 bool dfs(int step,int now)//step是当前用了多少次运算,now是当前指数 5 { 6 if(now<=0||step>idt||now<<(idt-step) >n;22 if(n==0) break;23 for(idt=0;;idt++)//从0开始枚举深度24 if(dfs(0,1)==true) break;//发现可以就结束循环25 cout< <